
LA-UR-14-24990
Approved for public release; distribution is unlimited.

Title: Optimal Kinodynamic Motion Planning in Environments with Unexpected
Obstacles

Author(s): Boardman, Beth L.
Harden, Troy A.
Martinez, Sonia

Intended for: 52nd Annual Allerton Conference on Communication, Control, and
Computing, 2014-10-01/2014-10-03 (Monticello, Illinois, United States)

Issued: 2014-10-02 (rev.1)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Optimal Kinodynamic Motion Planning in Environments with
Unexpected Obstacles

Beth Boardman1,2, Troy Harden2, and Sonia Martı́nez1

Abstract— This paper presents and analyzes a new algorithm,
the Goal Tree (GT) algorithm, for motion planning in dynamic
environments where new, unexpected obstacles appear sporad-
ically. The GT builds on the RRT* algorithm by employing
an initial RRT* tree rooted at the goal. When finding new
obstacle information, O , the GT quickly constructs a new tree
rooted at the current location of the robot, xI′ , by sampling
in a strict subset of the free space. The new tree then reuses
branches from the original tree so that it can produce paths
to the goal. Compared to running the RRT*, the GT reduces,
on average, the time needed to produce a path of equal cost.
We prove that, generically, there exists a region, which is a
strict subset of the free space, which can be used with the
GT algorithm to produce an asymptotically globally optimal
path. This region is theoretically characterized for planning
problems in d dimensional environments. An alternative region
is provided for robots with Dubins’ vehicle dynamics and a
vehicle with no dynamics both under a Euclidean distance cost
function. Simulations for a Dubins’ vehicle robot verify our
results.

I. INTRODUCTION

Robot motion planning in a dynamic environment is an
active research area, especially for high-dimensional systems.
In dynamic environments the research has focused on reusing
information from the previous planning to reduce the amount
of time needed to find a feasible path. The purpose of
this paper is to propose and analyze the Goal Tree (GT)
algorithm, a sampling-based planner for motion planning in
an environment with unexpected obstacles that returns the
optimal path.

The idea of re-adapting motion plans when finding new
unexpected obstacles has been exploited significantly in the
literature. The discrete-time D*, and D* lite algorithms [1],
[2] re-adapt A* algorithms to find the optimal path in a dis-
cretized space. However, these algorithms become intractable
as the dimensionality increases. To alleviate the curse of
dimensionality, research has been focused on extending
sampling-based planners to work in dynamic environments.
Another disadvantage of the discrete space algorithms is their
limited ability to handle differential constraints.

Bug algorithms, [3], are continuous time algorithms that
can handle the sudden appearance of obstacles. Bug algo-
rithms have the robot move in a straight line toward the goal
position until an obstacle is encountered. Once an obstacle
is encountered, the robot travels around the boundary of the

1 Mechanical and Aerospace Engineering, University of California,
San Diego, 9500 Gilman Dr, La Jolla, Ca 92093-0411 {bboardman,
soniamd}@ucsd.edu

2 Los Alamos National Laboratory, PO Box 1663, MS J580, Los Alamos,
NM 87545 harden@lanl.gov

obstacle until it can once again head toward the goal position.
While these algorithms can handle unexpected obstacles,
they can be inefficient and sub-optimal.

In static environments, sampling-based planners include
Rapidly-exploring Dense Tree algorithms (RDTs, also known
as RRTs) [4] and Sampling-Based Roadmaps (SBRs, in-
cluding Probabilistic Roadmaps (PRMs) [5]). These planners
are probabilistically complete and return a feasible solution
to the static environment problem quickly. For a slight
increase in runtime, the RRT* and PRM* [6] planners return
the path that is asymptotically optimal. The RRT# [7] is
another sampling-based planner that returns an optimal path
by maintaining a graph and a spanning subtree. The RRT#

separates the exploration and exploitation tasks so the algo-
rithm can be run in parallel to improve performance. Another
algorithm, the Fast Marching Tree (FMT*) [8], performs a
”lazy” dynamic programming recursion on samples from the
configuration space. to produce a tree of paths. The FMT*
has improved performance compared to the RRT*.

The sampling-based algorithms in [9], [10] [11], [12],
and [13] all extend the RRT algorithm to deal with dynamic
environments. The Dynamic Rapidly-exploring Random Tree
(DRRT) [9] roots the tree at the goal and trims branches
in the tree that are obstructed by the new obstacle. The
trimming is done by removing nodes that are within a region
that contains the obstacle and whose edge is in conflict.
The descendants of the affected nodes are also removed
so that only one tree is maintained. The remaining paths
in the tree still lead to the goal but are not optimal. The
tree is regrown by sampling, with some probability, in
the affected area of the configuration space. In [12] the
Reconfigurable Random Forest (RRF) algorithm maintains
a forest of trees. The trees are from previous plannings
and have been broken apart according to the new obstacle
information and initializing new trees at the new initial
and goal configuration. The RRF attempts to connect the
trees as in the RRT-connect [14] making this framework
good for multi-query problems. The trees are trimmed by
removing all nodes from within a bounding box containing
the obstacle that are determined to be in conflict with the
new obstacle. The RRF also prunes its trees to maintain a
manageable number of nodes to reduce searching time. The
lazy reconfiguration forest (LRF) is presented in [13], and
uses the idea of maintaining multiple RRT trees from the
RRF but only checks for invalid edges along the task path
instead of checking the entire tree. To rebuild a tree from the
initial position, way points from the previous tree are reused
to increase the likelihood of a successful connection in the

execution extended RRT (ERRT) [11]. The ERRT also uses
an adaptive cost function that improves the generated paths.
The multipartite RRT (MP-RRT) [10] combines several of
the above mentioned planners and an opportunistic strategy
for reusing information during replanning in a dynamic
environment. However, none of these algorithms produce
optimal paths.

The GT algorithm reuses information from a RRT* rooted
at the goal configuration, TG, to reduce the replanning
time. When the robot determines that a previously unknown
obstacle is obstructing its path, TG is trimmed to reflect
this information. A new RRT* rooted at the robot’s current
configuration, TI , is incrementally built in the affected region
of the configuration space. Instead of attempting to merge the
two trees after each extension of TI , an attempt is made to
insert a branch from TG into TI . This means that only some
of the information from TG is reused, not the entire tree. This
manuscript also presents theorems for the existence of a new
sampling region, which is a strict subset of the configuration
space, such that, when used with the GT algorithm, a
globally optimal path is produced asymptotically. First, a
generic region is shown to exist, then a characterization is
provided for a general robot in a d dimensional environment.
By exploiting the known path types of specific vehicles,
no differential constraints in a d dimensional configuration
space and a Dubins’ vehicle, alternative characterizations of
the new planning region are given. Simulations of the GT
for a robot with Dubins’ vehicle show that our algorithm
improves replanning performance compared to rerunning the
RRT*.

This paper is organized as follows. The RRT* algorithm
is reviewed in Section II. Section III details and Section IV
analyzes the optimality of the proposed Goal Tree algorithm,
which is then tested using simulation in Section V. Sec-
tion VI presents ideas for future work.

II. THE RAPIDLY-EXPLORING RANDOM TREE STAR
ALGORITHM

This section briefly describes the RRT* algorithm by
Karaman and Frazzoli which is theoretically analyzed in [6].
The kinodynamic RRT* is presented in [15].

The RRT*, outline in Algorithm 1, builds a tree, T which
is dense with probability one in the entire configuration
space, X , as the number of samples, n, goes to infinity.
Denote by Xfree the free configuration space in X and Xobs as
the obstacles space. The tree is composed of a set of vertices,
v ∈T .V , and edges, e ∈T .E. Each edge is an ordered pair
of vertices e1,2 = (v1,v2), where v1 is the parent and v2 is the
child. We use Cost as the notation for the cost function being
minimized. Each edge added to T has a cost associated with
it, denoted cedge(e), where e ∈ T .E. In the original work
by [6], the edge cost considered is the cost-to-go; that is the
cost of e1,2 = (v1,v2) is the cost of moving from the parent
v1 to the child v2. Then, the cost of a vertex, Cost(v), is the
sum of the costs of the edges connecting the root to v. The
paths in T are then asymptotically optimal, meaning that
as n→ ∞ the optimal path from the initial configuration,

xI ∈ Xfree, to any other configuration in Xfree is recovered.
More precisely, the functions involved in the RRT* process
are described as follows. With some abuse of notation, we
will use the configuration xv instead of v.

After initializing T at xI , the RRT* begins by using
the Sample function to output xrand, a uniformly sampled
random configuration from Xfree. The Nearest function finds
the nearest vertex, xnearest ∈T , and extends T a distance ε

from xnearest to get xnew.
Next, the set of near vertices from T with respect to xnew

are output as the set Xnear from the function Near. Vertices
that are farther than r = min(ε,γ(log(nv)/nv)

(1/d)), where nv
is the number of vertices in T , d is the dimension of the
configuration space, and γ is an independent parameter, are
omitted from Xnear. The best parent for xnew, determined in
FindBestParent, is the vertex in Xnear that has a collision free
path with the lowest Cost(xnew), as outlined in Algorithm 2.
The paths that connect the vertices to each other (determined
using Steer), do so according to the system dynamics. Only
collision free edges are added to T . The collision checker,
CollisionCheck, returns true if the edge is collision-free. If
xnew is added to T , then Rewire attempts to add the other
vertices in Xnear as children of xnew based upon a lower cost
and collision-free edge. The Rewire function is outlined in
Algorithm 3.

Algorithm 1 T = (V,E)← RRT∗(xI ,ε)

T ← InitializeTree();
T ← InsertNode(/0,xI ,T);
for i = 1 to i = N do

xrand← Sample(i);
xnew← Nearest(T ,xrand,ε);
Xnear← Near(T ,xnew);
xparent← FindBestParent(Xnear,xnew);
if xparent 6= NULL then

T ← InsertNode((xparent,xnew),xnew,T);
T ← Rewire(T ,Xnear,xnew);

end if
end for
return T

Algorithm 2 xparent← FindBestParent(Xnear,xnew)

xparent← /0;
cmin← ∞;
for xnear ∈ Xnear do

enear,new← Steer(xnear,xnew);
cnear← Cost(xnear)+ cedge(enear,new);
if cnear < cmin and CollisionFree(enear,new) then

xparent← xnear;
cmin← cnear;

end if
end for
return xparent;

Algorithm 3 T ← Rewire(T ,Xnear,xnew)

for (xnear) ∈ Xnear do
enear,new = Steer(xnew,xnear);
if Cost(xnew)+ cedge(enear,new)< Cost(xnear) then

if CollisionFree(enear,new) then
xoldparent← Parent(T ,xnear);
T .remove((xoldparent,xnear));
T .add((xnew,xnear));

end if
end if

end for
return T ;

III. THE GOAL TREE ALGORITHM

In this section the Goal Tree (GT) algorithm is described
in detail. The GT is a new method for replanning when
unexpected or moving obstacles obstruct the execution of
the path previously determined by the RRT*. It follows the
procedure of the D* algorithm, however it employs trees as
in the RRT* algorithm, which allows for greater flexibility
to deal with vehicle dynamics and higher dimensional con-
figuration spaces.

The RRT* produces paths that are asymptotically optimal
from the root to any other point in the configuration space.
By a slight modification to the RRT* algorithm, one can
produce a tree, TG, rooted at the goal configuration, xG,
such that the asymptotically optimal path from any point in
Xfree to xG can be recovered. To do this, the cost associated
with each edge e1,2 = (v1,v2) in the RRT* tree should be the
cost-to-come; i.e. the cost of traveling from the child v2 to
the parent v1.

Once the new obstacle, O , has been discovered, the GT
builds a new tree, TI , that is rooted at the new initial
configuration, xI′ , in some subset R⊆ X \O , and connects it
to paths in TG that are still collision free.

Before the GT begins building TI , the edges in TG
are checked for conflict with O and are trimmed using
PropagateCost. Instead of checking every edge in TG we can
define a subregion that contains all possible vertices whose
trajectories are in conflict with O . We would like to define
the region as all points within some Euclidean distance from
a point in O . Let us define the center point of O as xc, and
the maximum Euclidean distance from xc to the boundary of
O , ∂O , as rmax. A graph search is done over TG to determine
the maximum edge cost,

rcost = max
e∈T .E

{cedge(e)}. (1)

Because
cedge(e1,2)≥ dEuclidean(x1,x2), (2)

the set of vertices whose trajectories are in conflict with O
is

Vconflict = {v ∈TG.V | dEuclidean(xc,xv)≤ rmax + rcost}. (3)

(a) (b) (c)

(d) (e) (f)

Fig. 1: An illustrative example of how the Goal Tree algo-
rithm works. (a) Shows the original tree, TG, with the robot,
at the yellow dot, trying to reach the goal (blue dot). (b)
The robot senses an obstacle obstructing its current path and
removes the nodes and edges that are obstructed by the new
obstacle. A new tree, TI , is initialized with the new initial
configuration (green node). (c) The new tree is extended and
attempts to connect to the old tree via the gray edge. (d) It is
determined that the connection results in a blocked path and
no branch from TG is added. (e) TI is extended again and a
connection to the old tree is attempted. (f) It is determined
that the path to the goal, from TG, is unobstructed and the
path is added to the new tree.

All trajectories of the vertices in Vconflict are checked for
conflict with O . All branches that contain vertices found in
conflict with O are trimmed from TG.

Algorithm 4 presents the pseudo code for the GT algorithm
and Fig. 1 pictorially describes how the GT works through a
simple example. Given xI′ and TG, TI is initialized and xI′

is inserted into TI as the root. The tree TI is iteratively built
as in the RRT* for each sample drawn from R. However,
before the algorithm enters the Rewire phase, xnew enters
the Near function, now taking neighbors from TG. These
neighbors, XGnear, enter FindBestParent and are searched
over for the best child, xchild, of xnew. The best xchild is the
one with the lowest cost-to-come, according to Cost(xnear) =
Cost(xnew)+ cedge(enew,near) and has a collision free path. If
xchild is found then InsertBranch is entered. InsertBranch,
Algorithm 5, uses FindPath to recover the path, Π, from
xchild to xG, that is in TG. The path Π is added to TI ,
effectively connecting xI′ to xG, through xnew. Now the GT
enters Rewire and then continues on to the next sample.

Algorithm 4 TI = (V,E)← GT(xI′ ,TG,ε)

PropagateObstacle(TG);
TI ← InitializeTree();
TI ← InsertNode(/0,xI′ ,TI);
for i = 1 to i = N do

xrand← SampleR(i);
xnew← Nearest(TI ,xrand,ε);
Xnear← Near(TI ,xnew);
xparent← FindBestParent(Xnear,xnew);
if xparent 6= NULL then

TI ← InsertNode((xparent,xnew),xnew,TI);
XGnear← Near(TG,xnew);
if XGnear 6= /0 then

xchild← FindBestParent(XGnear,xnew);
if xchild 6= NULL then

TI ← InsertBranch(xchild,xnew,TI ,TG);
end if

end if
TI ← Rewire(TI ,XInear,xnew);

end if
end for
return TI

Algorithm 5 TI = (V,E)←
InsertBranch(xchild,xnew,TI ,TG)

Π← FindPath(xchild,TG);
TI ← AddPath(Π,TI);
return TI

IV. ANALYSIS

In this section, we analyze the optimality and time com-
plexity of the GT algorithm. The proofs for the following
lemmas and theorems have been omitted for brevity and will
appear elsewhere along with additional simulations.

A. Optimality

If the sampling region, R, used to construct TI , is the new
obstacle free C-space, then TI will recover the optimal path
as in the regular RRT* procedure. This process will converge
on the optimal path faster as entire paths from TG will be
added to TI and so more nodes are available for rewiring and
connecting xI′ optimally to the goal. Reducing the sampling
region to build TI can lead to faster convergence but can
prevent global optimality. We first prove that, generically,
there exist restricted regions of the space which can be used
to construct TI in the GT algorithm so that convergence to
a globally optimal path is guaranteed, and then we aim to
characterize these regions for common cases.

Theorem 1: Let X = [0,1]d be a d-dimensional C-space,
d ∈N and d ≥ 2. Let Xobs be the C-obstacles space. Assume
O is newly found obstacle information, i.e. O 6⊂ Xobs, and
there exists a ball, B(xG,r) ⊂ (Xobs ∪O)c, r > 0. Suppose
the feasible dynamic paths of vehicles in a free environment
are at least C 3. Then, there exists a generic R (X such

that if TI constructed in R using the RRT* with information
Xobs∪O and TG built in X using the RRT* with information
Xobs, then an optimal path, π : xI→ xG, can be asymptotically
recovered by the GT algorithm as n→ ∞.

In d dimensional environments, a region which guarantees
the recovery of an optimal trajectory by building TI in the
given region can be found as follows. Consider the new initial
and goal configurations, xI′ and xG, and a new obstacle O
such that xI′ ,xG /∈O . For simplicity, assume that O ∩Xobs =
∅.

First, a region in the environment is defined and then,
using this region for sampling, the GT is proven to recover
a geodesic from xI′ to xG. Note that in the following,
the distinction is made between position and configuration.
Position is the (p1, p2, ...) position in the environment, while
configuration can also include orientations or velocities.

Definition 1: The shadow of xG on O , SO , is the envelope
or hull, as defined by position rather than configuration,
formed by the geodesics from all configurations in Xfree
going to xG that are in conflict with O .

Note that xI′ ∈ SO must be true, otherwise, there is no
need for replanning. Also note that SO is a set of positions
and not configurations. In this way each position has an
infinite number of possible configurations associated with
it.

Definition 2: Let S ⊂ X be a set such that xI′ ∈ S and
whose boundary is denoted as ∂S. Then, an outgoing config-
uration on ∂S is defined as a configuration whose position
is on ∂S and whose orientation or velocity will force the
vehicle to leave S.

In the following, all outgoing configurations, Definition 2,
are with respect to SO .

Due to the obstacles in the environment, any configuration
in Xfree could have more than one geodesic to xG.

Lemma 1: All outgoing configurations on ∂SO have
geodesics to xG that are not in conflict with O .

The main result, Theorem 2, states that using the shadow
of xG on O as the new sampling region will allow the Goal
Tree to recover a geodesic from xI′ to xG. Due to the tree
structure used by the GT, only one of the geodesics from xI′

to xG will be recovered.
Theorem 2: Let SO be as in Definition 1. If the Goal Tree

algorithm uses SO as the new sampling region to build TI ,
then it will converge to a globally optimal path as n→ ∞.

The proof of Theorem 2 uses the definition of the shadow,
Def. 1, and Lemma 1 to show that the optimal path can be
recovered.

The next result provides an alternative characterization of
a feasible sampling region for use in the GT by a robot with
no differential constraints and a Euclidean cost function; by
exploiting what is known about geodesics in this case.

Theorem 3: Let X be a d-dimensional C-space such that
d ∈ N and d ≥ 2. Let the initial obstacle space be Xobs and
let O 6⊂ Xobs be new obstacle information. For simplicity,
assume that O ∩Xobs =∅. If

1) X is the Euclidean metric space,
2) O ⊂ R⊂ X ,

3) R is convex, and
4) xI′ ∈ R

then the GT algorithm will converge to a globally optimal
path, π , as n→ ∞ by constructing TI using R and the O
information and employing TG with the previous Xobs.

Note that, if O ∩Xobs 6= ∅, then R would have to be a
convex region containing the connected component of O ∪
Xobs that contains O . This connected set would then be used
in the above in place of O .

The region characterization from Definition 1 can be
used to approximately determine where to sample from
the geodesics obtained from the initial tree for planning
problems. However, and as for the Euclidean case, alternative
regions can be used if the particular dynamics are amenable
to direct analysis. The following leads to a characterization
of a new sampling region, R, for use in building TI during re-
planning with the Dubins’ vehicle. The details of the Dubins’
vehicle dynamics are in Section V-A. Geodesics with respect
to Euclidean length are characterized as concatenations of
circular arcs and straight lines. The minimum turning radius
for the Dubins’ vehicle is denoted as ρ .

The following definitions and lemmas are useful in ob-
taining the main Dubins’ vehicle result of this subsection.

Using O , a region that contains at least one valid path
around O is defined.

Definition 3: Define the region RO as the smallest convex
set that contains the union of O with circles of radius 2ρ

centered at each corner of O .
Now, RO is extended to contain feasible paths from xI′ to

the previous region RO .
Definition 4: Define the region R, as the smallest convex

region that contains RO and B(xI′ ,2ρ).
The first Dubins’ vehicle result of this subsection states

the existence of valid trajectories in R.
Lemma 2: The region R, as in Definition 4, contains at

least one feasible Dubins’ vehicle trajectory from xI′ to any
outgoing configuration on ∂R.

Lemma 2 is proven by using knowledge of the Dubins’
vehicle’s possible maneuvers.

The second result is that, the optimal path, from a con-
figuration inside R to an arbitrary outgoing configuration on
∂R, will be entirely inside R.

Lemma 3: Let σ be a feasible path for a Dubins’ vehicle
that starts at xI′ and ends at an outgoing configuration xend ∈
∂R. If σ leaves and returns to R, then there exists another
path, π , from xI′ to xend, that is entirely in R and that has a
lower path length than σ .

The proof of Lemma 3 constructs a new path, based on
the original path that leaves R, that is entirely in R and shows
that this new path has a lower cost.

The main Dubins’ vehicle result of this subsection says
that R is a new sampling region that will allow the GT to
recover the optimal path. This is stated more specifically in
Theorem 4.

Theorem 4: Consider a Dubins’ vehicle at xI′ for which
minimum-length paths are to be found to xG. Assume that
the new obstacle, O , is a convex polygon and does not

intersect any other obstacles. Let R be as in Definition 4
and assume xG /∈ R. If the Goal Tree algorithm uses R as the
new sampling region to build TI , then it will converge to a
globally optimal path as n→ ∞.

The proof of Theorem 4 follows from Lemma 3 and the
construction of TG.

B. Time Complexity

From [6], the RRT* algorithm spends most of its time in
the near neighbor search which has a time complexity of
Θ(n logn). The GT algorithm does two neighbor searches
per iteration, one through each tree. Giving

Θ(nI lognI)+Θ(nG lognG)≤ 2Θ(n logn) = Θ(n logn), (4)

where nI is the number of vertices in TI , nG is the number
of vertices in TG, and n = max(nI ,nG).

Every time a branch from TG is added to TI , the the cost-
to-come is propagated down the branch, which has a time
complexity of O(nπ), where nπ is the number of vertices in
the branch. As with the RRT*, the GT is dominated by the
neighbor search and has time complexity Θ(n logn).

Every time new obstacle information is found, the infor-
mation must be propagated through TG to remove the proper
edges. Let the set of vertices that have trajectories in conflict
with the new obstacle information be denoted as Vobs and let
|D(Vobs)| be the descendants of Vobs. Then, this propagation
can be done in O(|D(Vobs)| log(n)) due to heap operations.

V. SIMULATIONS

The simulations were implemented in MATLAB on a
computer with a 2.66 Hz Intel Core i7 processor and 8 GB
RAM running Mac OS X 10.9.5. The results presented in
this section (unless otherwise stated) are an average over
100 simulations. The Goal Tree (GT) replanning algorithm
is compared to replanning with the RRT*. The algorithm is
tested with the Dubins’ vehicle dynamics.

A. Dubins’ Vehicle

The Dubins’ vehicle has three states, x- and y-position and
orientation θ . The dynamics for the Dubins’ vehicle are

ẋ(t) = vcos(θ) (5a)
ẏ(t) = vsin(θ) (5b)

θ̇(t) = u, |u| ≤ v
ρ
, (5c)

where v is the speed of the vehicle and ρ is the minimum
turning radius. It is assume that both v and ρ are constant.
The optimal trajectory between two configurations for these
dynamics are discussed in [16]. The locally optimal trajec-
tory defined by the above dynamics is one of six paths, RSL,
LSR, RSR, LSL, RLR, and LRL, where L means left, R
means right, and S means straight. In [15], only four of these
paths, RSL, LSR, LSL, and RSR are considered, this paper
also only considers this subset of paths.

B. Simulation Results

The Dubins’ vehicle GT initial tree, TG, was run for
80 thousand iterations and the replanning tree, TI , for 10
thousand iterations. The RRT* replanning simulations were
each run for 80 thousand iterations.

At the end of the GT simulation (10 thousand iterations)
the minimum path cost was 287 seconds and took 1365
seconds to run. The RRT* after running for 1365 seconds
(29157 iterations) only recovered a path of cost 303 seconds.
The GT recovered a path 5.46% better than the RRT* at this
time (1365 seconds). The RRT*, in 80 thousand iterations,
never has an average path cost lower than 290 seconds. The
GT reaches this same cost of 290 seconds at a time of 341
seconds, 91% quicker.

The average initial path cost for the GT is 325 seconds,
which took an average of 265 iterations with a runtime of
31.4 seconds. While the RRT*’s initial path cost is 386
seconds after a runtime of 22.2 seconds and 462 iterations.
This is a 15.98% decrease in the initial cost for the GT
in comparison to the RRT*. For the RRT* to reach the
same path cost of 325 seconds, the RRT* must run for 330
seconds (6530 iterations). The GT gets to this path cost of
325 seconds 90.48% quicker than the RRT*. This is because
the path recovered from TG has already been refined, initially
resulting in a more optimal path.

Each iteration of the GT takes longer to run, but each
iteration improves the path more than in the RRT*. From
Fig 2, it can be seen that the GT starts off with a lower path
cost compared to the RRT* and then continues to decrease
the cost quickly before it levels off. The leveling off results
from not refining TI outside the region R.

0 10 20 30 40 50 60 70
4.5

5

5.5

6

6.5

runtime (min)

c
o

s
t/

e
x
e

c
tu

ti
o

n
 t

im
e

 (
m

in
)

Full Algorithm - 6 epsilon, 100sims, 80kGT, 10kRRT*
RRT* - 6 epsilon, 100sims, 80k

0 10 20 30 40 50 60 70

0.7
0.8
0.9

1
1.1
1.2
1.3

runtime (min)

s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 (

m
in

)

Fig. 2: Dubins’ vehicle simulation results showing the aver-
age minimum cost of a path to the goal as a function of the
algorithm runtime.

VI. CONCLUSION

This paper introduced the Goal Tree (GT) algorithm, a
replanning algorithm that produces an asymptotically optimal
path in the presence of unexpected obstacles. The GT builds

a new tree by taking samples from a new region R and
by reusing branches from the original tree that are not in
conflict with the new obstacle. To reduce the time needed
to obtain the optimal path to the goal, R is taken to be
a strict subset of the the configuration space. This region
R is proven to recover the optimal path and characterized
for robots with no dynamics, Dubins’ vehicle dynamics, and
general dynamics in a n-dimensional environments. The GT
algorithm is tested in simulation using the Dubins’ vehicle
dynamics. The simulations showed that, while the average
iteration of the GT takes longer to run than the RRT*, the
GT converges to the optimal path quicker.

Future directions of this work include characterizing the
new sampling region, R, for higher dimensional systems and
extending the GT for multiple robots with multiple tasks
to accomplish in a changing environment. In this case an
original tree would be rooted at each task location and the
robots would then build their own trees rooted at their current
location.

ACKNOWLEDGMENT

This work was supported by Los Alamos National Lab-
oratory and is approved for public release under LA-UR-
14-24990. Los Alamos National Laboratory, an affirmative
action/equal opportunity employer, is operated by the Los
Alamos National Security, LLC for the National Nuclear
Security Administration of the U.S. Department of Energy
under contract DE-AC52-06NA25396. By acceptance of this
article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or
reproduce the published form of this contribution, or to allow
others to do so, for U.S. Government purposes. Los Alamos
National Laboratory requests that the publisher identify this
article as work performed under the auspices of the U.S.
Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researchers right
to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its
technical correctness.

REFERENCES

[1] S. Koenig and M. Likhachev, “D* lite.” in Proceedings of the National
Conference on Artificial Intelligence (AAAI), 2002, pp. 476–483.

[2] A. Stentz, “The focussed D* algorithm for real-time replanning,”
in Proceedings of the International Joint Conference on Artificial
Intelligence, vol. 95, 1995, pp. 1652–1659.

[3] V. J. Lumelsky and A. A. Stepanov, “Path-planning strategies for a
point mobile automaton moving amidst unknown obstacles of arbitrary
shape,” Algorithmica, vol. 2, no. 1-4, pp. 403–430, 1987.

[4] S. LaValle, Planning algorithms. Cambridge university press, 2006.
[5] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-

abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[6] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[7] O. Arslan and P. Tsiotras, “Use of relaxation methods in sampling-
based algorithms for optimal motion planning,” in IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2013, pp.
2421–2428.

[8] L. Janson and M. Pavone, “Fast marching trees: a fast marching
sampling-based method for optimal motion planning in many dimen-
sions,” in International Symposium on Robotics Research, 2013.

[9] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs,” in
Proceedings IEEE International Conference on Robotics and Automa-
tion. IEEE, 2006, pp. 1243–1248.

[10] M. Zucker, J. Kuffner, and M. Branicky, “Multipartite RRTs for
rapid replanning in dynamic environments,” in Proceedings IEEE
International Conference on Robotics and Automation. IEEE, 2007,
pp. 1603–1609.

[11] J. Bruce and M. Veloso, “Real-time randomized path planning for
robot navigation,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, vol. 3. IEEE, 2002, pp. 2383–2388.

[12] T.-Y. Li and Y.-C. Shie, “An incremental learning approach to motion
planning with roadmap management,” in Proceedings IEEE Interna-
tional Conference on Robotics and Automation, vol. 4. IEEE, 2002,
pp. 3411–3416.

[13] R. Gayle, K. R. Klingler, and P. G. Xavier, “Lazy reconfiguration
forest (LRF)-an approach for motion planning with multiple tasks in
dynamic environments.” in Proceedings International Conference on
Robotics and Automation. IEEE, 2007, pp. 1316–1323.

[14] J. J. Kuffner Jr and S. M. LaValle, “RRT-connect: An efficient
approach to single-query path planning,” in Proceedings IEEE Inter-
national Conference on Robotics and Automation, vol. 2. IEEE, 2000,
pp. 995–1001.

[15] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning
using incremental sampling-based methods,” in Porceedings IEEE
Conference on Decision and Control (CDC), 2010, pp. 7681–7687.

[16] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of mathematics, pp. 497–516, 1957.

